Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-(1*R**,2*S**,3*S**)-Diethyl 4-methyl-2-phenyl-6-(2-phenylhydrazinylidene)cyclohex-4-ene-1,3-dicarboxylate

Abel M. Maharramov, Arif I. Ismiyev and Bahruz A. Rashidov*

Baku State University, Z. Khalilov St. 23, Baku, AZ-1148, Azerbaijan Correspondence e-mail: Bahruz_81@mail.ru

Received 1 July 2010; accepted 3 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.149; data-to-parameter ratio = 19.2.

In the title compound, $C_{25}H_{28}N_2O_4$, the cyclohexene ring adopts a half-chair conformation and the dihedral angle between the aromatic rings is 59.44 (11)°. In the crystal, a weak intermolecular $N-H\cdots O$ hydrogen bond occurs.

Related literature

For general background to Schiff bases, see: Cimerman *et al.* (1997); Offe *et al.* (1952); Richardson *et al.* (1988). For a related structure, see: Tamboura *et al.* (2009).

Experimental

Crystal data

S = 1.00

5548 reflections

289 parameters

$\begin{array}{l} C_{25}H_{28}N_2O_4 \\ M_r = 420.49 \\ \text{Monoclinic, } P_{2_1/c} \\ a = 11.5271 \ (10) \ \text{\AA} \\ b = 13.4599 \ (12) \ \text{\AA} \\ c = 14.4479 \ (13) \ \text{\AA} \\ \beta = 93.342 \ (2)^\circ \end{array}$	V = 2237.8 (3) Å ³ Z = 4 Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K $0.30 \times 0.30 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{min} = 0.975, T_{max} = 0.983$	25227 measured reflections 5548 independent reflections 4052 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.051$ wR(F ²) = 0.149	H atoms treated by a mixture independent and constrained

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL*.

We thank Professor Victor N. Khrustalev for fruitful discussions and help with this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2008).

References

- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.
- Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). *Thalassemia: Pathophysiology and Management*, Part B, p. 81. New York: Alan R. Liss Inc.
- Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.

Acta Cryst. (2011). E67, o153 [doi:10.1107/S1600536810045058]

rac-(1*R**,2*S**,3*S**)-Diethyl 4-methyl-2-phenyl-6-(2-phenylhydrazinylidene)cyclohex-4-ene-1,3-dicarboxylate

A. M. Maharramov, A. I. Ismiyev and B. A. Rashidov

Comment

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman *et al.*, 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and as potential oral ironchelating drugs for genetic disorders such as thalassemia (Offe *et al.*, 1952; Richardson *et al.*, 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura *et al.*, 2009). (rac)-Diethyl-4-methyl-2-phenyl-6-(2-phenylhydrazono)cyclohex-4ene-1,3-dicarboxylate (I) have good antibacterial properties. We have synthesized the title compound, (I), and its structure is reported here (Fig. 1)..

Experimental

(rac)-diethyl-4-hydroxy-4-methyl-6-oxo-2-phenyl-1,3-dicarboxylate (20 mmol), phenylhydrazine (20 mmol) were dissolved in 20 ml ethanol. The mixture was stirred at 345–350 K for 10 h. After cooling to room temperature white crystals were obtained. The crystals was filtered and washed with ethanol. recrystallization from ethanol (50 ml) yielded colourless block-shaped crystals of the title compound.

Refinement

The hydrogen atoms of the NH-group (I) molecule were localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C) \text{ for CH}_3\text{-group and } U_{iso}(H) = 1.2U_{eq}(N)$ for amino groups]. The other hydrogen atoms were placed in calculated positions with and refined in the riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C)]$.

Figures

Fig. 1. The molecular structure of the title compound, with the atomic numberingscheme. Displacement ellipsoids were drawn at the 50% probability level.

rac-(1R*,2S*,3S*)-Diethyl 4-methyl-2-phenyl-6-(2-phenylhydrazinylidene)cyclohex-4-ene-1,3-dicarboxylate

Crystal data	
$C_{25}H_{28}N_2O_4$	F(000) = 896
$M_r = 420.49$	$D_{\rm x} = 1.248 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 444 K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.5271 (10) Å	Cell parameters from 8834 reflections
<i>b</i> = 13.4599 (12) Å	$\theta = 2.2 - 28.2^{\circ}$
c = 14.4479 (13) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 93.342 \ (2)^{\circ}$	T = 296 K
$V = 2237.8 (3) \text{ Å}^3$	Block, colourless
Z = 4	$0.30\times0.30\times0.20\ mm$

Data collection

Bruker APEXII CCD diffractometer	5548 independent reflections
Radiation source: fine-focus sealed tube	4052 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.022$
ϕ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1998)	$h = -15 \rightarrow 15$
$T_{\min} = 0.975, T_{\max} = 0.983$	$k = -17 \rightarrow 17$
25227 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.149$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2 + 0.859P]$ where $P = (F_o^2 + 2F_c^2)/3$
5548 reflections	$(\Delta/\sigma)_{\text{max}} = 0.004$
289 parameters	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.15913 (9)	0.34836 (9)	0.54219 (8)	0.0484 (3)
O2	0.17111 (13)	0.50496 (11)	0.59085 (11)	0.0709 (4)
N1	0.30804 (12)	0.45097 (10)	0.40168 (8)	0.0419 (3)
C1	0.34611 (13)	0.41600 (11)	0.56061 (9)	0.0380 (3)
H1B	0.3852	0.4757	0.5855	0.046*
C2	0.38941 (12)	0.32697 (11)	0.61990 (9)	0.0361 (3)
H2A	0.3507	0.2673	0.5944	0.043*
C3	0.52040 (13)	0.31464 (12)	0.60926 (10)	0.0413 (3)
НЗА	0.5596	0.3754	0.6316	0.050*
C4	0.54451 (14)	0.30086 (16)	0.50773 (12)	0.0542 (4)
C5	0.47578 (14)	0.34400 (14)	0.44177 (11)	0.0490 (4)
H5A	0.4929	0.3345	0.3803	0.059*
C6	0.37661 (13)	0.40445 (11)	0.46046 (10)	0.0382 (3)
C7	0.23724 (14)	0.47893 (11)	0.24792 (10)	0.0428 (3)
N2	0.32965 (12)	0.45154 (10)	0.30993 (8)	0.0448 (3)
H2B	0.3966	0.4359	0.2911	0.054*
03	0.67654 (10)	0.24545 (9)	0.69781 (9)	0.0594 (3)
O4	0.51562 (11)	0.15407 (9)	0.68262 (10)	0.0594 (3)
C8	0.25723 (17)	0.48808 (14)	0.15465 (11)	0.0531 (4)
H8A	0.3309	0.4760	0.1341	0.064*
C9	0.16733 (19)	0.51528 (16)	0.09237 (12)	0.0627 (5)
H9A	0.1813	0.5221	0.0299	0.075*
C10	0.05779 (19)	0.53242 (15)	0.12122 (13)	0.0646 (5)
H10A	-0.0021	0.5506	0.0787	0.078*
C11	0.03751 (18)	0.52248 (17)	0.21352 (14)	0.0658 (5)
H11A	-0.0366	0.5339	0.2334	0.079*
C12	0.12618 (16)	0.49575 (15)	0.27715 (12)	0.0565 (4)
H12A	0.1115	0.4890	0.3395	0.068*
C13	0.21677 (14)	0.43063 (12)	0.56620 (10)	0.0431 (3)
C14	0.03416 (16)	0.34864 (19)	0.54926 (17)	0.0726 (6)
H14A	-0.0022	0.3925	0.5029	0.087*
H14B	0.0150	0.3720	0.6100	0.087*
C15	-0.0078 (2)	0.2468 (3)	0.5345 (3)	0.0940 (9)
H15A	-0.089 (3)	0.246 (3)	0.543 (2)	0.141*
H15B	0.038 (3)	0.204 (3)	0.579 (2)	0.141*
H15C	0.010 (3)	0.229 (3)	0.464 (3)	0.141*
C16	0.35616 (14)	0.33795 (11)	0.71930 (10)	0.0418 (3)
C17	0.26498 (15)	0.28237 (14)	0.75034 (12)	0.0519 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17A	0.2261	0.2380	0.7101	0.062*
C18	0.2309 (2)	0.29172 (18)	0.83973 (15)	0.0698 (6)
H18A	0.1696	0.2537	0.8593	0.084*
C19	0.2866 (3)	0.35647 (19)	0.89953 (15)	0.0816 (7)
H19A	0.2641	0.3621	0.9601	0.098*
C20	0.3760 (3)	0.41330 (18)	0.87026 (14)	0.0831 (7)
H20A	0.4133	0.4583	0.9108	0.100*
C21	0.4114 (2)	0.40414 (15)	0.78021 (12)	0.0633 (5)
H21A	0.4724	0.4427	0.7609	0.076*
C22	0.56773 (13)	0.22838 (12)	0.66713 (11)	0.0430 (3)
C23	0.73944 (16)	0.16560 (15)	0.74630 (14)	0.0617 (5)
H23A	0.7502	0.1102	0.7047	0.074*
H23B	0.6968	0.1424	0.7980	0.074*
C24	0.85377 (18)	0.2070 (2)	0.78001 (17)	0.0780 (7)
H24A	0.8982	0.1564	0.8127	0.117*
H24B	0.8418	0.2618	0.8209	0.117*
H24C	0.8951	0.2295	0.7282	0.117*
C25	0.6461 (2)	0.2380 (3)	0.48389 (17)	0.1185 (13)
H25A	0.6504	0.2357	0.4178	0.178*
H25B	0.6363	0.1719	0.5072	0.178*
H25C	0.7164	0.2661	0.5115	0.178*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0358 (6)	0.0533 (7)	0.0561 (7)	0.0049 (5)	0.0021 (5)	-0.0080 (5)
O2	0.0700 (9)	0.0599 (8)	0.0818 (10)	0.0231 (7)	-0.0039 (7)	-0.0232 (7)
N1	0.0497 (7)	0.0413 (7)	0.0344 (6)	0.0034 (6)	-0.0012 (5)	0.0019 (5)
C1	0.0425 (8)	0.0365 (7)	0.0343 (7)	-0.0010 (6)	-0.0029 (6)	0.0003 (5)
C2	0.0357 (7)	0.0364 (7)	0.0360 (7)	-0.0020 (6)	0.0000 (5)	0.0017 (5)
C3	0.0348 (7)	0.0452 (8)	0.0433 (8)	-0.0026 (6)	-0.0031 (6)	0.0091 (6)
C4	0.0373 (8)	0.0774 (12)	0.0486 (9)	0.0092 (8)	0.0081 (7)	0.0155 (8)
C5	0.0427 (8)	0.0659 (11)	0.0389 (8)	0.0058 (7)	0.0065 (6)	0.0091 (7)
C6	0.0397 (7)	0.0394 (7)	0.0352 (7)	-0.0023 (6)	-0.0009 (6)	0.0024 (6)
C7	0.0527 (9)	0.0384 (7)	0.0367 (7)	0.0047 (6)	-0.0036 (6)	0.0012 (6)
N2	0.0461 (7)	0.0538 (8)	0.0342 (6)	0.0071 (6)	0.0004 (5)	0.0036 (5)
O3	0.0478 (7)	0.0564 (7)	0.0712 (8)	-0.0034 (5)	-0.0201 (6)	0.0201 (6)
O4	0.0492 (7)	0.0458 (7)	0.0826 (9)	-0.0026 (5)	0.0003 (6)	0.0151 (6)
C8	0.0588 (10)	0.0610 (10)	0.0392 (8)	0.0037 (8)	0.0005 (7)	0.0032 (7)
С9	0.0834 (14)	0.0677 (12)	0.0356 (8)	0.0030 (10)	-0.0093 (8)	0.0033 (8)
C10	0.0725 (13)	0.0640 (12)	0.0546 (11)	0.0151 (10)	-0.0213 (9)	-0.0022 (9)
C11	0.0568 (11)	0.0783 (13)	0.0610 (11)	0.0204 (10)	-0.0070 (9)	-0.0033 (10)
C12	0.0607 (11)	0.0679 (11)	0.0407 (8)	0.0168 (9)	0.0014 (7)	0.0012 (8)
C13	0.0485 (9)	0.0461 (8)	0.0343 (7)	0.0090 (7)	-0.0021 (6)	-0.0034 (6)
C14	0.0381 (9)	0.0907 (16)	0.0884 (15)	0.0118 (10)	-0.0004 (9)	-0.0160 (12)
C15	0.0479 (12)	0.112 (2)	0.122 (2)	-0.0180 (13)	0.0054 (13)	-0.0147 (18)
C16	0.0499 (9)	0.0390 (7)	0.0365 (7)	0.0062 (6)	0.0025 (6)	0.0059 (6)
C17	0.0531 (10)	0.0524 (9)	0.0511 (9)	0.0061 (8)	0.0100 (7)	0.0106 (7)

C18	0.0753 (13)	0.0769 (14)	0.0599 (12)	0.0185 (11)	0.0279 (10)	0.0203 (11)
C19	0.123 (2)	0.0778 (15)	0.0462 (11)	0.0353 (15)	0.0256 (12)	0.0136 (10)
C20	0.138 (2)	0.0670 (13)	0.0436 (10)	0.0085 (14)	-0.0038 (12)	-0.0099 (9)
C21	0.0915 (15)	0.0558 (11)	0.0421 (9)	-0.0110 (10)	-0.0010 (9)	-0.0008 (8)
C22	0.0402 (8)	0.0459 (8)	0.0427 (8)	-0.0002 (6)	-0.0003 (6)	0.0056 (6)
C23	0.0590 (11)	0.0592 (11)	0.0649 (11)	0.0090 (9)	-0.0131 (9)	0.0151 (9)
C24	0.0550 (12)	0.0930 (17)	0.0841 (15)	0.0032 (11)	-0.0133 (10)	0.0266 (13)
C25	0.0849 (17)	0.206 (4)	0.0673 (14)	0.085 (2)	0.0294 (13)	0.0412 (18)
Geometric param	neters (Å, °)					
01—C13		1 327 (2)	C10	—H10A	0.9300)
01 - C14		1.527(2) 1 450(2)	C11		1 382	(3)
$0^{2}-C^{13}$		1 1944 (19)	Cll	—H11A	0.9300)
N1-C6		1 2884 (19)	C12	—H12A	0.9300)
N1—N2		1 3630 (17)	C14		1 465	, (4)
C1-C13		1.5050(17) 1.511(2)	C14	—H14A	0.970)
C1 - C6		1.5169 (19)	C14	H14B	0.9700)
C1 - C2		1.5392 (19)	C15	H15A	0.95 (, 1)
C1—H1B		0.9800	C15	H15R	0.99 (1)
C^2 — C^{16}		1.515(2)	C15	—H15С	1.08 (1)
$C^2 - C^3$		1.515(2) 1.536(2)	C16	C21	1.00 ((2)
C2—H2A		0.9800	C16		1.386	(2)
C_{3} C_{2}^{2}		1.514(2)	C17		1.300	(2)
C3 - C4		1.511(2) 1 520(2)	C17	—H17A	0.9300)
C3_H3A		0.9800	C18		1 362	, (4)
C4-C5		1 336 (2)	C18	H18A	0.930	(+))
C4-C25		1.550(2) 1 501(3)	C19		1 370	, (4)
C5-C6		1.301(3) 1 441(2)	C19	—H19A	0.930)
С5—Н5А		0.9300	C20		1 391	(3)
C7—C8		1 386 (2)	C20	—H20A	0.930)
C7-C12		1.300(2) 1 390(2)	C21	H21A	0.9300)
C7N2		1.300(2) 1 401(2)	C23		1 486	(3)
N2_H2B		0.8600	C23	H23_A	0.970)
$03-C^{22}$		1 3257 (19)	C23	H23В	0.9700)
03-C23		1.5237(1)	C24	H24 A	0.9700)
04-C22		1.435(2) 1 1945(19)	C24	H24B	0.960)
C8-C9		1.1945 (19)	C24	H24C	0.960)
C8—H8A		0.9300	C25	H25A	0.9600)
C9 - C10		1 372 (3)	C25	H25R	0.960)
С9—Н9А		0.9300	C25	H25C	0.960)
C10—C11		1.374 (3)	023	11230	0.9000	,
C13—O1—C14		117.62 (14)	01–	C13C1	110.96	5(12)
C6—N1—N2		120.26 (13)	01–	C14C15	107.90	5 (18)
C13—C1—C6		110.41 (11)	01-	C14H14A	110.1	
C13—C1—C2		111.15 (12)	C15	—C14—H14A	110.1	
C6—C1—C2		111.43 (12)	01-	C14H14B	110.1	
C13—C1—H1B		107.9	C15	—C14—H14B	110.1	
C6—C1—H1B		107.9	H14	A—C14—H14B	108.4	

C2—C1—H1B	107.9	C14—C15—H15A	108 (2)
C16—C2—C3	114.21 (12)	C14—C15—H15B	107 (2)
C16—C2—C1	111.09 (12)	H15A—C15—H15B	113 (3)
C3—C2—C1	108.50 (11)	C14—C15—H15C	106 (2)
C16—C2—H2A	107.6	H15A—C15—H15C	111 (3)
C3—C2—H2A	107.6	H15B-C15-H15C	111 (3)
C1—C2—H2A	107.6	C21—C16—C17	118.16 (16)
C22—C3—C4	111.04 (14)	C21—C16—C2	122.30 (15)
C22—C3—C2	110.64 (12)	C17—C16—C2	119.51 (14)
C4—C3—C2	110.24 (12)	C18—C17—C16	121.14 (19)
С22—С3—НЗА	108.3	С18—С17—Н17А	119.4
С4—С3—НЗА	108.3	С16—С17—Н17А	119.4
С2—С3—НЗА	108.3	C19—C18—C17	120.3 (2)
C5—C4—C25	121.29 (17)	C19—C18—H18A	119.9
C5—C4—C3	120.07 (15)	C17—C18—H18A	119.9
C25—C4—C3	118.63 (15)	C18—C19—C20	119.80 (19)
C4—C5—C6	123.75 (15)	С18—С19—Н19А	120.1
C4—C5—H5A	118.1	С20—С19—Н19А	120.1
С6—С5—Н5А	118.1	C19—C20—C21	120.4 (2)
N1—C6—C5	127.86 (14)	C19—C20—H20A	119.8
N1—C6—C1	114.30 (13)	C21—C20—H20A	119.8
C5—C6—C1	117.84 (12)	C16—C21—C20	120.3 (2)
C8—C7—C12	119.29 (15)	C16—C21—H21A	119.9
C8—C7—N2	118.82 (15)	C20-C21-H21A	119.9
C12—C7—N2	121.88 (14)	O4—C22—O3	123.97 (15)
N1—N2—C7	116.63 (13)	O4—C22—C3	125.21 (14)
N1—N2—H2B	121.7	O3—C22—C3	110.81 (13)
C7—N2—H2B	121.7	O3—C23—C24	106.77 (16)
C22—O3—C23	117.95 (14)	O3—C23—H23A	110.4
C9—C8—C7	119.73 (17)	C24—C23—H23A	110.4
С9—С8—Н8А	120.1	O3—C23—H23B	110.4
С7—С8—Н8А	120.1	С24—С23—Н23В	110.4
C10—C9—C8	121.02 (17)	H23A—C23—H23B	108.6
С10—С9—Н9А	119.5	C23—C24—H24A	109.5
С8—С9—Н9А	119.5	C23—C24—H24B	109.5
C9—C10—C11	119.35 (17)	H24A—C24—H24B	109.5
C9—C10—H10A	120.3	C23—C24—H24C	109.5
C11—C10—H10A	120.3	H24A—C24—H24C	109.5
C10-C11-C12	120.66 (19)	H24B—C24—H24C	109.5
C10—C11—H11A	119.7	C4—C25—H25A	109.5
C12—C11—H11A	119.7	C4—C25—H25B	109.5
C11—C12—C7	119.93 (17)	H25A—C25—H25B	109.5
C11—C12—H12A	120.0	C4—C25—H25C	109.5
C7—C12—H12A	120.0	H25A—C25—H25C	109.5
O2—C13—O1	123.66 (16)	H25B—C25—H25C	109.5
O2—C13—C1	125.35 (16)		
C13—C1—C2—C16	-55.07 (15)	C10—C11—C12—C7	0.2 (3)
C6—C1—C2—C16	-178.68 (12)	C8—C7—C12—C11	-0.8 (3)
C13—C1—C2—C3	178.60 (12)	N2-C7-C12-C11	-179.88 (18)

C6—C1—C2—C3	54.99 (15)	C14—O1—C13—O2	-1.9 (2)
C16—C2—C3—C22	54.95 (17)	C14—O1—C13—C1	176.44 (15)
C1—C2—C3—C22	179.45 (12)	C6—C1—C13—O2	-113.05 (18)
C16—C2—C3—C4	178.17 (13)	C2-C1-C13-O2	122.76 (18)
C1—C2—C3—C4	-57.33 (16)	C6—C1—C13—O1	68.60 (16)
C22—C3—C4—C5	154.18 (17)	C2-C1-C13-O1	-55.59 (16)
C2—C3—C4—C5	31.2 (2)	C13-O1-C14-C15	-170.7 (2)
C22—C3—C4—C25	-25.6 (3)	C3—C2—C16—C21	49.1 (2)
C2—C3—C4—C25	-148.6 (2)	C1—C2—C16—C21	-74.00 (19)
C25—C4—C5—C6	179.5 (2)	C3—C2—C16—C17	-132.94 (15)
C3—C4—C5—C6	-0.3 (3)	C1—C2—C16—C17	103.95 (16)
N2—N1—C6—C5	-4.2 (2)	C21-C16-C17-C18	-0.8 (3)
N2-N1-C6-C1	176.16 (12)	C2-C16-C17-C18	-178.81 (16)
C4—C5—C6—N1	177.79 (18)	C16-C17-C18-C19	0.1 (3)
C4—C5—C6—C1	-2.6 (3)	C17—C18—C19—C20	0.7 (3)
C13-C1-C6-N1	29.81 (18)	C18-C19-C20-C21	-1.0 (4)
C2-C1-C6-N1	153.84 (13)	C17-C16-C21-C20	0.5 (3)
C13—C1—C6—C5	-149.86 (14)	C2-C16-C21-C20	178.51 (18)
C2-C1-C6-C5	-25.83 (18)	C19—C20—C21—C16	0.3 (3)
C6—N1—N2—C7	162.94 (14)	C23—O3—C22—O4	5.6 (3)
C8—C7—N2—N1	175.09 (14)	C23—O3—C22—C3	-173.54 (15)
C12—C7—N2—N1	-5.8 (2)	C4—C3—C22—O4	-89.5 (2)
C12—C7—C8—C9	1.1 (3)	C2—C3—C22—O4	33.2 (2)
N2—C7—C8—C9	-179.83 (17)	C4—C3—C22—O3	89.58 (17)
C7—C8—C9—C10	-0.7 (3)	C2—C3—C22—O3	-147.67 (14)
C8—C9—C10—C11	0.1 (3)	C22—O3—C23—C24	-175.08 (17)
C9—C10—C11—C12	0.2 (3)		

